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Abstract
Polarized neutron diffraction provides information about the magnetization
density of each individual crystallographic site. In the present paper the role of
the atomic site susceptibility tensor χi j accounting for the magnetic response of
individual atoms to an external magnetic field is discussed. The symmetry of
this tensor is very similar to that of the tensor ui j describing the thermal motion
of atoms. By analogy with the atomic displacement parameters (ADPs), atomic
susceptibility parameters (ASPs) can be introduced.

The six independent ASPs can be determined from polarized neutron
flipping ratio measurements and visualized as magnetic ellipsoids which
are analogous to the thermal ellipsoids obtained from ADPs. If the local
anisotropy is small, these magnetic ellipsoids approximate to spheres with
diameters proportional to the induced magnetization. In other cases, anomalous
(elongated or flattened) ellipsoids will occur. The ASPs have been determined
for the compound Nd3−x S4 which has the Th3P4 structure. They correspond to
strongly oblate magnetic ellipsoids; in contrast, in the isomorphous compound
Sm3Te4 the magnetic ellipsoids are found to be prolate.

1. Introduction

Polarized neutron diffraction is an extremely powerful tool with which to study the
magnetization process in crystals. This is due to the fact that while classical magnetic
measurements give information about the average magnetization, diffraction measurements
provide information about the variation of the magnetization throughout the unit cell. This
offers the possibility of interpreting the magnetization processes which take place in the crystal
on the microscopic level. Recently a rather peculiar magnetic structure was found in the
ferromagnetically ordered compounds U3Sb4 and U3Bi4. This structure was found to contain
uranium atoms of two types occupying the same crystallographic position but having different
values of magnetic moment [1]. Later, a similar effect was observed in the paramagnetic
compounds Sm3Te4 [2, 3] and Nd3−x S4, for which the moments induced by a magnetic field
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on the rare-earth (RE) ions in equivalent sites differed considerably. This behaviour arises
because, despite the overall cubic symmetry, the local symmetry of the RE ion is only tetragonal
and the moments induced on each RE ion by the magnetic field depend on the orientation of
the field with respect to the local tetragonal axis.

The effect can be described by attributing to each magnetic atom a site susceptibility
tensor χi j which gives the magnetic response of the atom to the applied magnetic field. It
is easy to show that the symmetry of the tensor χi j is the same as that of the tensor ui j

describing the thermal motion of atoms. The components of the tensor ui j represent the mean
square atomic displacement parameters (ADPs). By analogy with the ADPs, one can introduce
atomic susceptibility parameters (ASPs). The response of an atom to a magnetic field can then
be conveniently visualized as a susceptibility ellipsoid constructed from the six independent
ASPs in much the same way as thermal ellipsoids are constructed from the ADPs.

The ASPs can be determined from polarized neutron flipping ratio measurements if the
proper magnetic symmetry of the crystal is taken into account. In the absence of local
anisotropy the magnetic ellipsoids reduce to spheres with their radii proportional to the induced
magnetization, but in many cases anomalous (elongated or flattened) ellipsoids can appear.
The presence of such anisotropic magnetic ellipsoids can account for the anomalous magnetic
moments which have been found in two isomorphous RE compounds Nd3−xS4 and Sm3Te4 with
the Th3P4 structure. In the body of this letter the role of the local anisotropy in determining the
response of these compounds to an applied field is discussed and a formalism for calculating
the magnetic scattering implicit in this model is developed. Together these allow a proper
description, based on the full crystal symmetry, of the magnetization process in paramagnets
containing several equivalent magnetic atoms in the unit cell.

2. Anisotropic atomic susceptibilities

The overall response of a paramagnetic material to an applied magnetic field can described by
the tensor equation

Bi =
∑

j

mi j H j = µ0

(
Hi +

∑
j

χi j H j

)

as long as the field is not so large that non-linear effects become important. With this proviso,
the bulk magnetization M can be written as

Mi =
∑

j

χi j H j .

The number of independent components of the susceptibility tensor χi j is determined by the
crystal class, being one for cubic groups, two for all uniaxial groups and three, four and six
for orthorhombic, monoclinic and triclinic groups respectively. In a paramagnet containing
localized moments, the bulk magnetization is the vector sum of the magnetizations induced on
each of the constituent magnetic atoms and these will depend on the local site symmetry, rather
than the overall symmetry. A special property of magnetic diffraction is that it gives access to
the wavevector-dependent magnetic response and hence to the individual site susceptibilities.

Consider a single magnetic atom (a) with an anisotropic susceptibility arising from its
local environment; the magnetization induced on it by a field H is given by

M a = χaH.

An equivalent atom (b) related to the first by the symmetry operator {R̃ : t} would have
magnetization

M b = χbH = R̃χaR̃−1H.
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If the position of the first atom is ra and the distribution of moment about each atom (assumed
spherical) is ρ(r), then the magnetization distribution in the unit cell becomes

M(r) =
∑

p

R̃pχ
aR̃−1

p Hρ(r − R̃pra − tp)

where the sum is over all Ng operators {R̃p : tp} in the space group. If f (k) is the magnetic
form factor given by

∫ ∞
0 exp(ikr)4πr2ρ(r) dr , the corresponding magnetic structure factor is

M(k) = 1

Na
f (k)

∑
p

R̃pχ
aR̃−1

p H exp(ik · (R̃pra + tp))

where Na is the number of operators q for which R̃qra + tq = ra , so Ng/Na is the multiplicity
of the site a. The point group Q formed by the rotational parts of the set of operators q gives
the symmetry of the site a.

We recall (see for example [4]) that the scattered intensity for polarized neutrons is given
by

I = N2 + 2P0 · (N ′M ′
⊥ + N ′′M ′′

⊥) + M2
⊥,

where N is the nuclear structure factor with real and imaginary parts N ′ and N ′′, M ′
⊥ and

M ′′
⊥ are the real and imaginary parts of the magnetic interaction vector M⊥ defined by

M⊥(k) = k × M(k) × k and P0 is the neutron polarization vector. The quantity measured
experimentally is the flipping ratio, R = I +/I −, between the intensity of neutrons scattered
when polarized parallel (I +) and anti-parallel (I −) to the external magnetic field. R can
easily be expressed in terms of the susceptibility parameters using the equations given above
and hence the flipping ratios can be used to determine these parameters using least-squares
refinement techniques.

3. Symmetry constraints on the site susceptibility

Using the property of symmetry rotations that Ri j = R−1
j i , the symmetry constraints on the

components of the site susceptibility tensor are given by the set of equations

χi j =
k=3∑
k=1

l=3∑
l=1

Rik R jlχkl for 1 < i � 3; 1 < j � 3

for all operators R̃ in the group Q. These are the same symmetry constraints as apply to other
quantities which relate two vectors, such as the anisotropic thermal vibration parameters.
There are at most six independent components of the symmetric tensor χi j ; they can be
labelled with the single index m with m = 1; 2; 3 for i j = 11; 22; 33 and m = 4; 5; 6
for i j = 23, 32; 31, 13; 12, 21. To include determination of the these components in a least-
squares refinement procedure it is convenient to pre-calculate the set of 6 × 3 matrices P̃
where

Pim =
j=3∑
j=1

Rik R jkh j for m = 1, 2, 3 (k = 1, 2, 3)

and

Pim =
j=3∑
j=1

(Rik R jl + Rilr jk)h j for m = 4, k = 2, l = 3

m = 5, k = 3, l = 1

m = 6, k = 1, l = 2
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where the h j are the direction cosines of the magnetizing field. The moment induced by a
field of strength H on any atom related to the representative atom by the operator p can then
be written as

Mi = H
m=6∑
m=1

Pimχm

and the derivatives of the magnetic structure factors with respect to the components of the
susceptibility tensor are given by

∂Mi (k)

∂χm
= H

Na
f (k)

∑
p

Pim exp(ik · (R̃pra + tp))

a form which can easily be introduced into a least-squares program.

4. Experiment

Neutron diffraction measurements were carried out at the reactor ORPHÉE, LLB CEA, Saclay.
Prior to the polarized neutron study the crystal of Nd3−x S4 of dimensions 1.5 × 1.5 × 1.5 mm3

was characterized using the four-circle neutron diffractometer 6T2 with neutrons of wavelength
λ = 0.9 Å. Integrated intensities of 150 reflections were measured at room temperature and
were used to refine the single adjustable positional parameter, X , of sulphur, the site occupation
factor of Nd, the isotropic temperature factors and the extinction parameters. The latter were
found to be insignificant. The refinement gave X = 0.0735 for the sulphur position and 0.88
for the Nd site occupancy.

Polarized neutron measurements were performed on the two-axis lifting-counter
diffractometer 5C1 using a wavelength λ = 0.845 Å (Heusler alloy monochromator). The
polarization of the incident neutron beam was P0 = 0.91. Higher-order contamination was
suppressed to less than 0.01% by means of erbium filters. The temperature dependence of
the magnetic susceptibility was measured directly by means of polarized neutron scattering.
For this purpose the spin-up (I +) and spin-down (I −) intensities of the 211 reflection were
measured as a function of temperature and the difference I + − I − plotted versus temperature
(see figure 1). This difference,

I + − I − = 2χ H FN (P+
0 − P−

0 ),

is proportional to the Fourier component (211) of the wavevector-dependent susceptibility of
the crystal. As seen from the figure,Nd3−xS4 exhibits Curie–Weiss behaviour with θP ≈ −15 K
but remains paramagnetic down to 1.5 K. Two sets of polarized neutron flipping ratios were
measured at 2 K. In the first a vertical magnetic field of 7 T was applied nearly parallel to
the cubic [001] axis of the crystal. In fact there was a misalignment of about 10◦ between
the c-axis and the magnetic field direction. (The exact orientation of the magnetic field
direction with respect to the cubic crystal axes was taken properly into account in the final
data analysis.) A total of 116 flipping ratios with sin θ/λ < 0.4 Å−1 were measured. Because
of the misalignment mentioned above, the flipping ratios of symmetry-equivalent reflections
were not averaged together.

The second set consisted of 126 flipping ratios also measured at 2 K but with the magnetic
field not along any of the symmetry directions of the cubic structure. The orientation of the
field in this case was close to the [421] direction.
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Figure 1. The magnetic susceptibility (full circles) and inverse susceptibility (open triangles) of
Nd3−x S4 deduced from the difference in intensity of neutrons scattered by the 211 reflection with
polarization parallel (I +) and anti-parallel (I−) to the applied field.

5. Results and discussion

In Nd3−x S4 (cubic space group I 4̄3d) twelve Nd atoms occupy a single site (12a) with local
symmetry 4̄. These twelve magnetic atoms can be subdivided into three different groups
which have their local tetragonal axes along x , y and z respectively. As has been shown in [3],
when a magnetic field is applied parallel to one of the cubic fourfold axes the low-symmetry
(tetragonal) I 4̄2d group has to be used in the magnetic moment refinement. This is the
highest-symmetry subgroup of the paramagnetic group I 4̄3d under which the homogeneous
magnetization component MZ , induced parallel to the fourfold axis by the magnetic field, is
invariant. In this subgroup the 12a sites of the cubic group split into two different subsets; one
fourfold one (Nd1) in which the field axis is parallel to the local tetrad and an eightfold one
(Nd2) in which it is perpendicular. The refinement of the first data set using the tetragonal group
I 4̄2d demonstrated clearly that there is a very large difference between the magnetic moments
induced parallel and perpendicular to the local tetragonal axes. The moments induced on those
Nd atoms whose tetrad axes were parallel to the field were µNd1 = 0.62(5) µB compared to
µNd2 = 1.44(5) µB for those with the perpendicular orientation as illustrated in figure 2. The
goodness of fit χ2 = 5.14 for 116 reflections. For comparison, a model in which the local
anisotropy was neglected and all Nd atoms have the same moment gives µNd = 1.20(5) µB

and χ2 = 22.5.
There are severe difficulties in generalizing this method of analysing the data since, for

different field orientations, different subgroups of the original paramagnetic group (I 4̄3d)
must be used. The set of magnetic atoms which are equivalent in the absence of magnetic
field has to be split into several new sets which, because of their anisotropy, could have
different induced magnetic moments. Thus the choice of the subgroup compatible with
the homogeneous magnetization component induced by the field, the corresponding sets of
non-equivalent atoms and consequently the number of independent variables depend on the
orientation of the applied magnetic field. This becomes clear in considering how to treat the
set of flipping ratios measured with the field applied along the [421] direction. In this case
only a triclinic space group is compatible with the induced homogeneous magnetization, which
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Figure 2. Magnetic moments induced in Nd3−x S4 at 2 K, by a field H = 7 T parallel to [001].

implies that all six moments in the primitive unit cell can have different moments and should
be varied independently.

These difficulties can be overcome using the concept of site susceptibility. In this approach
the point group symmetries of the atomic sites of the paramagnetic group I 4̄3d are used to
constrain the site susceptibility tensors. This allows the magnetic moments induced on different
atoms by a magnetic field of arbitrary orientation to be described using the full symmetry of the
paramagnetic group. The symmetry constraints on the susceptibility tensor for a magnetic atom
occupying the 12a site in the group I 4̄3d imply χ11 = χ22 �= χ33 and χ12 = χ13 = χ23 = 0.
Thus only two independent susceptibility parameters need to be determined regardless of the
field direction.

The two independent components of susceptibility were determined from a least-squares fit
of the site susceptibility model to the flipping ratios using a least-squares refinement procedure
incorporating the results given in section 2 and built from routines in the CCSL [5, 6]. It may
be noted that the magnetic structure induced by the magnetic field from the site susceptibilities
is not in general collinear. The non-collinearity is taken into account in the magnetic structure
factor calculation on which the flipping ratio refinement is based. The refinement carried
out with the 116 flipping ratios measured with the magnetic field H = 7 T applied parallel
to [001] gave χ11 H = χ22 H = 1.45(5) µB and χ33 H = 0.55(5) µB with the goodness
of fit χ2 = 4.4. For convenience, the results are given as induced magnetic moments (the
susceptibility components multiplied by the magnetic field), since this allows easy comparison
with the results of a conventional least-squares refinement based on the localized magnetic
moment model. It is clear, however, that the χi j can easily be transformed to more conventional
units.

This analysis demonstrates that the susceptibility (and consequently the magnetization)
along the local tetragonal axis is nearly three times less than that perpendicular to the
axis. The same refinement procedure applied to the second data set of 122 flipping ratios
measured with the field parallel to the [421] direction gave χ11 H = χ22 H = 1.43(8) µB and
χ33 H = 0.76(16) µB with χ2 = 3.9. These parameters are the same, within experimental
error, as those obtained with the field along [001]. It should be pointed out that the relatively
poor precision in the determination of χ33 from the second set of data is due to rather strong
correlation (81%) between the parameters χ11 and χ33. These results confirm that the polarized
neutron data collected with different field orientations can be analysed within the paramagnetic
group I 4̄3d using just the two susceptibility parameters allowed by symmetry.
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Figure 3. A principal section through (1) the magnetic ellipsoid, (2) a unit sphere and (3) the
representation quadric for susceptibility.

The relationship between the site and bulk susceptibility tensors is quite straightforward:

χb =
∑

m

∑
q

Rqχ
mq

where χmq is the susceptibility tensor of the qth equivalent position (that generated by
the symmetry operator whose rotational part is Rq) for the mth independent magnetic
atom. The symmetry properties of the tensors ensure that the bulk susceptibility tensor
transforms with the full symmetry of the crystallographic class. For cubic Nd3−xS4 the bulk
susceptibility is isotropic and the bulk susceptibility tensor contains the single independent
element χb

11 = χb
22 = χb

33. Using the symmetry properties of the site susceptibility tensors of
the twelve Nd atoms in the unit cell, the above equation reduces to

χb
11 = 4(2χ11 + χ33).

This expression gives the full bulk susceptibility as long as the contribution from sulphur atoms
and the conduction electrons can be neglected. Since the diffraction data fitted well with the
model based on atomic U moments, the sulphur contribution can probably be neglected. On
the other hand the conduction electron contribution cannot be determined from the neutron
experiment.

Once the site susceptibility parameters are known, one can easily calculate the magnitude
and the direction of the moment induced on each Nd atom within the unit cell by a magnetic
field applied in an arbitrary direction, since the site susceptibility tensor relates the vectors
Ma and H .

It is often useful to represent the properties of a second-rank tensor by a quadratic surface
constructed from its independent components [7]. This surface gives a complete representation
of the tensor and can be used to derive any crystal property to which it relates. Such a surface
can be constructed from the site susceptibility tensor in two different ways. One representation
is given by the equation

x2

χ2
11

+
y2

χ2
22

+
z2

χ2
33

= 1

in which the axes are the principal axes of χi j (note that in the present case the principal axes
of the tensor coincide with the main crystal axes). It is an ellipsoid, whose semi-axes are
χ11, χ22 and χ33 (figure 3). This surface has the property that its radius vectors M give the
magnitude and direction of the magnetization which can be induced by a field H of fixed
(unit) magnitude and arbitrary direction. This surface will be called the magnetic ellipsoid.
Unfortunately it does not give the relationship between the directions of M and H in a simple
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Figure 4. The [100] projection of the unit cell of Nd3−x S4 showing the magnetic ellipsoids at 2 K
for H ‖ [011].

way. This relationship is more easily derived from the alternative representation surface (the
representation quadric for susceptibility):

χ11x2 + χ22 y2 + χ33z2 = 1

which is an ellipsoid, whose semi-axes are 1/
√

χ11, 1/
√

χ22 and 1/
√

χ33. The direction of
Ma is the normal to the surface of the representation quadric at the point ‘P’ (figure 3) at
which the radius vector ‘O P’ parallel to H intersects the surface [7].

The geometrical interpretation of the magnetic ellipsoid can be summarized as follows.
When H is directed along any of the three principal axes of the ellipsoid, Ma is parallel to H ,
but the induced moment is different for different axes. When H is not parallel to a principal
axis, Ma is no longer parallel to H , but has components both parallel and transverse to it. For
the case of Nd3S4 the local tetrad axis may be thought of as a direction of hard magnetization
and Ma has a tendency to turn away from it. Note that polarized neutrons give access to
only the parallel component of the induced moment, but the transverse (non-collinear) parts
of the moments could also be estimated from neutron diffraction data by measuring the total
integrated intensity of the magnetic scattering, rather than just the polarization-dependent part.

Magnetic ellipsoids representing the site susceptibilities of all the Nd atoms in Nd3S4 are
shown in figure 4. As seen from the figure, the strongly flattened ellipsoids (oblate susceptibility
tensor) occur in three different orientations, each having its short axis parallel to the tetrad axis
on which it lies. The arrows on the figure represent the magnitudes of the Nd moments which
are induced by a field applied parallel to the [011] direction, calculated using the refined ASPs.
It can be seen that only one third of the Nd moments lie parallel to the field, while the rest
have quite different directions. This rather complex non-collinear distribution of magnetic
moments is not however incompatible with the overall cubic symmetry of the crystal, since
the bulk magnetization, given by the vector sum of all magnetic moments, remains parallel to
the field and invariant with respect to the field orientation.

It is interesting to compare this result with the result reported earlier for the isomorphous
compound Sm3Te4 [3] in which Sm ions occupy the same crystallographic positions as Nd
in Nd3−x S4. According to [3], the moment induced along the local tetragonal axis of the Sm
ions was found to be about five times higher than that induced perpendicular to it, in sharp
contrast to the case for the Nd compound. Thus Sm3Te4 represents a case of strongly elongated
(prolate) local susceptibility.
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As has been mentioned above, the symmetry properties of tensors χi j and ui j are the same.
It is interesting to note several similarities between ADPs and atomic susceptibility parameters
(ASPs):

(i) ADPs are usually considered as a probe of the shape of the atomic potential well. The
ASPs can be considered as a probe of the magnetic Hamiltonian.

(ii) ADPs give information about atomic vibration, dynamics, disorder. ASPs give
information about magnetic correlation and spin dynamics.

(iii) Symmetry constraints for ASPs are the same as those for ADPs.
(iv) Anomalous ADPs can indicate the channel for structural phase transitions; similarly the

ASPs can suggest the way in which the crystal may order magnetically. This latter point
is well illustrated by the magnetic structure of U3Si2Al3 which is discussed in detail in
the following paper [8].

6. Conclusions

It has been shown that anisotropy due to the local environment of magnetic atoms can give rise
to the appearance of different magnetic moments on equivalent crystallographic positions
when magnetization is induced in the paramagnetic region by an applied magnetic field.
Such anisotropy can be described by site susceptibility tensors, the number of independent
components of which can vary from 2 for uniaxial site symmetries to 6 for triclinic sites.
The magnitude and direction of the moment induced on each particular atom in the unit cell
depends on the orientation of the principal axes of the susceptibility tensor with respect to
the field. Polarized neutron scattering can be used as a microscopic probe of such local
anisotropy. Nd3S4 and Sm3Te4 represent two extreme types of local anisotropy existing for
the crystallographic sites with uniaxial (tetragonal) symmetry, which can be called the prolate
and the oblate susceptibilities.
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